翻訳と辞書 |
Community matrix : ウィキペディア英語版 | Community matrix In mathematical biology, the community matrix is the linearization of the Lotka–Volterra equation at an equilibrium point. The eigenvalues of the community matrix determine the stability of the equilibrium point. The Lotka–Volterra predator-prey model is : where ''x''(''t'') denotes the number of prey, ''y''(''t'') the number of predators, and ''α'', ''β'', ''γ'' and ''δ'' are constants. The linearization of these differential equations at an equilibrium point (''x'' *, ''y'' *) has the form : where ''u'' = ''x'' − ''x'' * and ''v'' = ''y'' − ''y'' *. The matrix ''A'' is called the community matrix. If ''A'' has an eigenvalue with positive real part then the equilibrium is unstable, but if all eigenvalues have negative real part then it is stable. == References ==
* .
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Community matrix」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|